0

Можно ли увидеть воспоминание?

Каким образом коннектом (карта мозга) вмещает в себя когнитом, «библиотеку мозга»?

Коннекто́м (англ. connectome /kəˈnɛktoʊm/) — полное описание структуры связей в нервной системе организма.

«Когнитом в нашем понимании, — рассказывает К. В. Анохин, — это весь набор когнитивных элементов мозга, которые составляют нашу личность. Мы полагаем, что каждый из этих элементов представлен в мозге, в нашем коннектоме, в виде функциональной системы. И в этом основная сложность исследования когнитома. Когнитивная единица не лежит на полочке той или иной структуры мозга, каждая из них — это распределенная сеть клеток, причем клетки одной структуры могут входить в самые разные элементы субъективного опыта. А каждый элемент субъективного опыта — масса синхронно активируемых в определенный момент нейронов в разных областях мозга. Элементы когнитома, так же, как и весь когнитом, — это не статическая картина, это постоянно развивающаяся система. В результате нового опыта, обучения в эту сеть добавляются те или иные новые элементы, меняющие как структуру когнитома, так и связи между уже существующими элементами».

Как можно обнаружить эти когнитивные единицы? Как выделить среди миллиардов нейронов мозга группу, отвечающую за элемент субъективного опыта, найти материальный носитель воспоминания, представления, навыка? Похоже на сюжет для фантастического рассказа — но это можно сделать и уже делается благодаря методам молекулярной и клеточной биологии, хорошо знакомым читателям «Химии и жизни». Эти методы не только помогают установить, какие генетические и биохимические механизмы отвечают за хранение информации в мозге, — они позволяют непосредственно наблюдать функциональные системы нейронов и даже вмешиваться в их работу, активировать или инактивировать. (И только после этого можно считать доказанным, что группа клеток действительно является хранилищем впечатления, результата мыслительного процесса или программы поведения.)

Один из таких методов развивают в отделе нейронаук Курчатовского института. Для выявления следов памяти в мозге может служить экспрессия «ранних» генов.

Экспрессия генов — это процесс, в ходе которого наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется в функциональный продукт — РНК или белок.

Буквально через минуты после получения новой входящей информации в нейронах, которые будут ответственны за ее хранение, начинает синтезироваться матричная РНК этих генов. Их активность зависит от обучения, в фоновом режиме не наблюдается, и она необходима для формирования нового опыта. К.В.Анохин с сотрудниками изучают один из таких генов — c-fos, известный также как протоонкоген, — с 80-х годов прошлого века (Н.Е.Малеева и соавт., «Генетика», 1989, 25, 1119—1121, см. также статью «Маршруты на карте мозга», «Химия и жизнь», 2004, № 9). Можно сказать, что это ген столкновения с новизной. Новый внешний фактор, несоответствие событий ожиданиям, вообще все, что требует включения когнитивного процесса, вызывает экспрессию ранних генов в отдельных нейронах. Эти-то гены и дают возможность картировать элементы субъективного опыта.

Оптоволоконная регистрация экспрессии генов in vivo

Для эксперимента нужны трансгенные мыши, у которых регуляторный элемент гена c-fos управляет также геном зеленого флуоресцентного белка… У этих мышей в клетках мозга, обрабатывающих новую информацию, — и только в них, поскольку в других клетках ранний ген не активируется, — появится флуоресценция при облучении синим или ультрафиолетовым светом. Например, если мышь, оказавшись в новой обстановке, ощупывает пол и стенки экспериментальной камеры усами-вибриссами, то засветятся клетки коры мозга, в которые приходят импульсы от тактильных рецепторов вибрисс.

Однако мышь непрозрачна. Допустим, появился флуоресцентный белок во всех клетках одной функциональной системы, но как его подсветить, вызвав «ответное» свечение, и как зарегистрировать получившуюся картину? Еще раз напомним, что клеток, возможно, миллионы и они распределены по всему мозгу. Поэтому исследователи разработали методы, позволяющие просветлять мозг мыши — делать его прозрачным.

А чтобы регистрировать свечение отдельных клеток в трехмерном мозге и получать трехмерную карту элемента индивидуального опыта, отдел нейронаук Курчатовского института в сотрудничестве с нижегородским Институтом прикладной физики создали специальную установку, которая позволяет фотографировать прозрачный мозг мыши послойно, с разрешением до 0,5 мкм. Метод называется «лазерная плосколучевая оптическая томография» (ЛПОТ): плоский луч лазера движется через мозг, помещенный в ванночку, и возбуждает флуоресценцию в микронном слое. Из стопочки этих срезов можно реконструировать трехмерную картину. Зеленые точки в целом мозге — созвездие нервных клеток, активных в определенном поведенческом опыте.

Лазерная плосколучевая оптическая томография

Можно пойти и глубже — например, рассмотреть распределение флуоресцирующих клеток в гиппокампе, структуре, ответственной за формирование памяти («Химия и жизнь», 2011, № 8), найти в нем следы субъективного опыта, который получила мышь в последние минуты жизни.

Понятно, что живой мозг таким образом изучать нельзя, и это плохо. Когда нет возможности исследовать одно животное дважды, например в разных, но чем-то сходных ситуациях или в одной и той же, но в нескольких повторностях, — невозможно узнать, как формируются элементы когнитивного опыта, как они связаны между собой. Поэтому в отделе нейронаук Курчатовского института сейчас разрабатывают методы прижизненной регистрации свечения в глубине мозга, непосредственно в момент, когда животное получает тот или иной опыт. В мозг мыши вводят оптоволокно, легкий крепеж и длинный шнур не стесняют ее движений, и можно в течение нескольких дней следить, как меняется активность нейронов, например, при содержании мыши в темноте или стимуляции током.

Такая длительная регистрация позволяет выяснить, как перекрывается активность различных нейронов в разных эпизодах. Изучение таких нейронов может сыграть ключевую роль в построении теории мозга — вероятно, именно они отвечают за формирование связей между единицами когнитома. Сеть ассоциаций в нашем мозге может возникать именно благодаря «нейронам-хабам», входящим более чем в одну функциональную систему.

К.В.Анохин с сотрудниками предлагают рассматривать ассоциативную память как линейную и нелинейную. Линейная ассоциативная память — то, что мы со школьной скамьи знаем как павловский условный рефлекс. Когда собака получает пищу и слышит звонок одновременно либо с очень маленьким временным интервалом, два сигнала «встречаются» в одной нервной клетке. Но есть и долговременная память, которая позволяет нам ассоциировать события, разделенные во времени. Это возможно благодаря долговременным изменениям в нейронах. Событие, активировавшее нервную клетку, оставляет в ней след, в каких-то случаях на всю жизнь — изменяется активность генов этого нейрона, изменяется синтез белков. (Формирование линейной ассоциативной памяти от активности генов, как правило, не зависит.) Второе воздействие накладывается на уже измененные свойства нейрона, и таким образом один элемент опыта связывается с другим, пусть даже их разделяют месяцы или годы. Активируясь в рамках одной функциональной системы, нейрон активирует и другую — мы вспоминаем нечто имеющее отношение к новому событию, адресация к одной системе включает и другие, апеллирует к прошлому опыту.

Вероятно, именно таким образом в когнитоме формируются модули, специализированные к накоплению информации определенного типа, — например, модули запоминания лиц или других объектов, принадлежащих к одному классу. Определенный нейрон, участвующий в нескольких функциональных системах, которые объединены неким общим признаком, «накапливает» следы участия в каждой из ситуаций, и возникает явление, уже подтвержденное экспериментально, — когнитивная специализация нейронов.

Читатели, вероятно, встречали новостные сообщения о «нейроне Мэрилин Монро» или «нейроне Билла Клинтона» (работы Родриго Квиана Квироги с коллегами из университета Лейчестера, Великобритания). Конкретный нейрон активируется в ответ на предъявление фотографии президента США, его имени в тексте, карикатуры на него, а возможно, и на предъявление фотографии Моники Левински, если участник эксперимента знает, кто эта девушка и чем она себя прославила. Наверняка и у кошки имеются «нейрон мыши», «нейрон собаки» и т.п. Но существуют и нейроны квалий, категорий чувственного опыта, — так, в зрительной коре индивида, способного различать цвета, должен быть нейрон, который активируется при попадании в поле зрения красного объекта, чем бы этот объект ни был.

Возникает естественный вопрос: а что произойдет, если активировать клетки определенной функциональной системы? Почувствует ли кошка «призрак» мыши, а человек (пусть это будет фантастическое допущение — понятно, что такие опыты на людях невозможны) — фантом Билла Клинтона или Мэрилин Монро?

Синтетическая память

Технически это опять же вполне осуществимо. Можно подставить под регуляторные элементы раннего гена, активирующегося в нейроне при получении опыта, не ген флуоресцентного белка, а ген мембранного канала, который активируется светом. Если провести с таким трансгенным животным сеанс обучения, а потом «подсветить» его мозг с помощью того же оптоволокна — какова будет реакция?

Ответ на этот вопрос дала работа, выполненная группой исследователей под руководством нобелевского лауреата Сусуму Тонегава из Массачусетского технологического института (Xu Liu e.a., «Optogenetic stimulation of a hippocampal engram activates fear memory recall», «Nature», 2012, 484, 381-385, doi:10.1038/nature11028).

У трансгенных мышей вместе с геном c-fos — тем самым, обнаруженным российскими учеными, — активировался ген ченнелродопсина (channelrhodopsin 2). Это белок одноклеточных зеленых водорослей — для фотосинтезирующих организмов светочувствительность очень важна — из того же семейства GPC- рецепторов, что и родопсин человеческого глаза (см. статью о Нобелевской премии по химии в прошлом номере «Химии и жизни»). Channel значит «канал», и действительно, ченнелродопсин, в отличие от других рецепторов семейства, — одновременно и рецептор, и канал, пропускающий ионы сквозь мембрану. Если это мембрана нейрона, возникает деполяризация, то есть нейрон активируется. Что и требовалось получить: обучение «пометило» нейроны функциональной системы, заставив их синтезировать ченнелродопсин, и теперь именно этот нейронный контур можно включать по желанию экспериментатора, просто подавая свет на оптоволокно.

Схема эксперимента, в котором у мыши активировалось воспоминание о страхе. У трансгенных мышей вместе с геном c-fos активируется также ген белка tTA. Этот белок, в свою очередь, взаимодействует с векторной конструкцией, которую вводят мышам в мозг, и в ней включаются гены флуоресцентного белка и ченнелродопсина. Нейроны, в которых произошла активация (то есть те, которые «запомнили» страх), благодаря ченнелродопсину повторно активируются при подсветке через оптоволокно, а благодаря флуоресцентному белку выглядят светящимися на микрофотографиях (справа)

Мышей обучали бояться — помещали в незнакомую обстановку и ударяли током. В соответствующей группе клеток активировался ранний ген и синтезировался фоточувствительный ионный канал (см. рисунок на предыдущей странице). Затем мышь пересаживали в другую камеру, несхожую с первой на вид и на ощупь, и через оптоволокно освещали определенную область гиппокампа — зубчатую извилину; про нее известно, что она, помимо прочего, играет ключевую роль в запоминании пережитого страха. И мыши начинали бояться! Вероятно, им казалось, что они снова в той камере, где раньше испытали неприятные ощущения в лапках.

Так исследователи установили существование паттерна страха — клеток, вовлеченных в запоминание конкретно- го неприятного эпизода. Активируя этот паттерн, или функциональную систему, мы можем извлечь из хранилища воспоминания. Правда, сами исследователи воспользовались термином «энграмма», от греческого слова, означающего буквально «внутренняя запись». Этот термин предложил еще в начале ХХ века немецкий зоолог Рихард Земан для обозначения гипотетического следа памяти в мозге. Теперь слово «гипотетический» смело можно вычеркивать.

Можно пойти еще дальше и генерировать в мозге подопытного животного синтетическую память — запись о том, чего не было. Такая работа тоже была опубликована весной этого года (Aleena R. Garner e. a., «Generation of a synthetic memory trace», «Science», 2012, 335, 6075, 1513—1516, doi:10.1126/ science.1214985). В этом опыте промотор c-fosуправлял геном рецептора (снова из семейства GPCR!), который, реагируя с определенным химическим веществом, активировал нейрон. Такой трансгенной мыши позволяли обследовать безопасную камеру, а потом в другой обстановке давали ей препарат, активирующий рецепторы, и ударяли током. После этого мышь, снова помещенная во вторую камеру, испытывала страх только в том случае, если ей опять давали препарат — без препарата она ее не узнавала. По-видимому, это значит, что у мыши формируется гибридное воспоминание — она запоминает не реальную камеру, а некую смесь реальных сенсорных сигналов и синтетических — «призрачных» элементов первой камеры.

Мышь получает удар током, и одновременно ей дают препарат, который активирует группу нейронов, отвечающую за память о другой обстановке. В результате у нее формируется «гибридная» память о страхе: снова оказавшись во второй камере, она не узнает ее без фармакологической стимуляции.

Это далеко не все, о чем можно было бы рассказать, — каждая из упомянутых работ содержит обширный список литературы. С другой стороны, ясно, что исследования сети элементов индивидуального опыта делают лишь первые шаги. Мозг человека — самый сложный объект в известной нам части Вселенной, для его исследования по- требуются такие методы и такие вычислительные возможности, которых у нас пока нет. Но это не значит, что их не будет никогда. Удивительные открытия нам еще предстоят.

Источник — http://hij.ru

Ана

Добавить комментарий